Limnol. Oceanogr., 44(7), 1999, 1730–1749
نویسندگان
چکیده
The zebra mussel, Dreissena polymorpha, a nonindigenous invasive species, is now widespread throughout the eastern half of North America. Because zebra mussels are ubiquitous and because they effectively filter particulate matter out of suspension, the cycling and residence times of particle-reactive metals will likely be affected in waters with zebra mussels. This study describes experiments designed to assess the possibility of using this species as a bioindicator of metals in ambient freshwater environments. Laboratory exposures of zebra mussels to 110mAg, 109Cd, 51Cr, 14C, 203Hg, and 75Se were employed to measure their assimilation efficiencies (percentage of ingested element that crosses gut lining) from eight food types (four algal species and bacteria, seston, and mineral assemblages), absorption efficiencies from water (percentage of element pumped by the mussel that is absorbed by the animal), and rates of depuration of these elements from mussels following long-term exposures to food and water. Assimilation efficiencies of elements from foods ranged from 4 to 29% for silver (Ag), 19 to 72% for cadmium (Cd), 42 to 85% for carbon (C), 2 to 19% for chromium (Cr), 4 to 40% for mercury (Hg), and 8 to 46% for selenium (Se). Absorption efficiencies from the dissolved phase were 1.87% for Ag, 1.02% for Cd, 0.47% for Cr(III), 0.27% for Cr(VI), 1.17% for Hg, and 0.03% for Se. Efflux rate constants (d21) following long-term exposure to food and water were 0.067 and 0.084 for Ag, 0.013 and 0.011 for Cd, 0.019 and 0.011 for Cr, 0.050 for Hg (food only), and 0.026 and 0.035 for Se. These loss rates corresponded to biological half-lives ranging from 8 d for Ag to 76 d for Se. Loss rates of trace elements from zebra mussel feces followed the following sequence: Cr , Ag , Se , Hg # Cd, with average retention half-times being 59, 43, 11, 6.7, and 5.1 d, respectively, which indicates that geochemical cycling rates from zebra mussel biodeposits are element specific. Egestion patterns of the radioisotopes indicated two digestive phases, extracellular and intracellular digestion. The extent of intracellular digestion ranged from 7 to 40%, depending on the food source, and correlated with assimilation efficiency for Ag, Cd, and Hg. The bioaccumulation parameters measured for D. polymorpha can be used in kinetic models to quantify the relative importance of food and water as sources of metals and to predict on a site-specific basis the tissue concentrations of metals in these mussels, as shown for Cd. Because D. polymorpha accumulates metals from dissolved and particulate sources in proportion to ambient concentrations, this species can be an effective bioindicator of freshwater metal contamination. Many trace elements of environmental concern are particle reactive and concentrate on suspended particles, including phytoplankton, in aquatic systems. The introduction of zebra mussels (Dreissena polymorpha) to many regions of North America may lead to a potential change in the flux of many trace elements in these waters because these mussels are so effective in grazing on phytoplankton and seston in lakes and rivers (Fahnenstiel et al. 1995; Caraco et al. 1997). However, few studies have investigated changes in trace element cycling in waters with zebra mussels. Individual zebra mussel pumping rates and particle ingestion rates (Roditi et al. 1996) scaled to common population densities suggest that a high fraction of the total load of a particle-reactive trace element in a body of water will pass through zebra mussels, either through the gut or through the mussels’ gills in the dissolved phase. Furthermore, given their current and anticipated wide1 Corresponding author.
منابع مشابه
Limnol. Oceanogr., 44(4), 1999, 1184
that I can easily take to sea and consult as an authoritative reference. This book is not just an updated version of the Clay and Medwin predecessor—it is much more comprehensive, containing a good blend of theory and hard-won data from measurements made at sea and in the lab. The fact that its list price is less than the current price of the earlier book is an unexpected bonus! I strongly reco...
متن کاملLimnol. Oceanogr., 44(2), 1999, 447–454
Geophysical and ecological dynamics within lakes of the McMurdo Dry Valleys, Antarctica, are controlled by the presence of permanent ice covers. Despite the importance of the permanent ice cover, there have been no studies that have examined specific couplings between changes in the geophysical properties of the ice covers and dynamic ecological processes within the underlying water column. Her...
متن کاملMeasuring the ecological significance of microscale nutrient patches
parative rapid ammonium uptake by four species of marine phytoplankton. Limnol. Oceanogr. 27: 814-827. -, J. J. MCCARTHY, AND D. G. PEAVEY. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210-215. HEALEY, F. P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5: 281-286. HUTCHINSON, G. E...
متن کاملLimnol. Oceanogr., 44(3), 1999, 699–702
Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m22 yr21 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil m...
متن کاملLimnol. Oceanogr., 44(6), 1999, 1498–1508
There is an apparent mismatch between the high carbon demand of seals and seabirds breeding on the subantarctic island of South Georgia and the overall low primary production measured in the waters that surround the island. However, average phytoplankton production values may not be completely representative, and local systems may exist where primary production is considerably higher. Here, we ...
متن کاملLimnol. Oceanogr., 44(3, part 2), 1999, 784–794
A single stress, acidification with sulfuric acid, was applied to Little Rock Lake in a whole-ecosystem manipulation. We documented a wide range of responses to the acidification, including increases in the concentrations of various chemicals, shifts in microbial processes and a major increase in water clarity to UV-B radiation. Each of these changes could in itself be considered as a separate ...
متن کامل